Part Number Hot Search : 
UC3842 XN4503 82C255 MM1096BF U281622 2SC2831A FP9129 TSOP5238
Product Description
Full Text Search
 

To Download 10-F112M3A040SH-M749F09 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  10-fy12m3a040sh-m749f08 10-F112M3A040SH-M749F09 flow3xmnpc 1 1200v/40a 3 phase mixed voltage component topology neutral point clamped inverter reactive power capability low inductance layout solar inverter ups 10-fy12m3a040sh-m749f08 10-F112M3A040SH-M749F09 tj=25c, unless otherwise specified parameter symbol value unit half bridge igbt t h =80c 3 1 t c =80c 4 1 t h =80c 7 5 t c =80c 1 14 t sc t j 1 50c 10 s v cc v ge =15v 8 00 v neutral point fwd t h =80c 1 8 t c =80c 2 6 t h =80c 3 0 t c =80c 4 5 300 a a t j =t j max t p limited by t j max 6 00 175 150 120 20 t j 1 50c v ce <=v ces a 1 200 v a a w c pulsed collector current i fsm t j max t j max d c forward current surge forward current v rrm i f t j =t j max i c i cpulse t j =t j max types v ge p tot maximum junction temperature features maximum ratings flow1 housing target applications schematic condition w a maximum junction temperature v ce collector-emitter break down voltage p ower dissipation per igbt short circuit ratings dc collector current i c p tot t j =t j max 1 20 t p limited by t j max p eak repetitive reverse voltage turn off safe operating area gate-emitter peak voltage power dissipation per diode c v 12 mm 17 mm copyright vincotech 1 r evision: 3
10-fy12m3a040sh-m749f08 10-F112M3A040SH-M749F09 tj=25c, unless otherwise specified parameter symbol value unit maximum ratings condition neutral point igbt t h =80c 2 3 t c =80c 2 9 t h =80c 3 7 t c =80c 5 6 t sc t j 1 50c 6 s v cc v ge =15v 3 60 v half bridge fwd t h =80c 1 2 t c =80c 1 4 t h =80c 2 8 t c =80c 4 3 thermal properties insulation properties v is t=2s d c voltage 4000 v min 12,7 mm min 12,7 mm v 600 90 maximum junction temperature pulsed collector current t p limited by t j max t j =t j max t vj max = 150c t urn off safe operating area (rbsoa) i cmax v ce max = 600v v ce i cpuls short circuit ratings d c collector current power dissipation per igbt c w 175 20 90 a a a collector-emitter break down voltage i c gate-emitter peak voltage v v a t j =t j max 1 200 dc forward current i f t j =t j max p tot v rrm v ge t j max c maximum junction temperature t j max 1 75 w peak repetitive reverse voltage -40+(tjmax - 25) c storage temperature t stg -40+125 c power dissipation per diode p tot t j =t j max a s urge forward current i fsm 10 ms, sin 180 t j = 150 c 6 5 clearance insulation voltage creepage distance t op operation temperature under switching condition copyright vincotech 2 revision: 3
10-fy12m3a040sh-m749f08 10-F112M3A040SH-M749F09 parameter s ymbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max tj=25c 5,2 5,8 6,4 tj=125c tj=25c 1,7 1,96 2,4 tj=125c 2,29 tj=25c 0,005 tj=125c tj=25c 120 tj=125c tj=25c 70 tj=125c 72 tj=25c 13 tj=125c 15 tj=25c 166 tj=125c 217 tj=25c 45 tj=125c 79 tj=25c 0,31 tj=125c 0,52 tj=25c 0,67 tj=125c 1,16 thermal resistance chip to heatsink per chip r thjh thermal grease t hickness 50um = 1 w/mk 1,27 k/w tj=25c 2,28 2,5 tj=125c 1,74 tj=25c 100 tj=125c 500 tj=25c 32 tj=125c 41 tj=25c 18 tj=125c 40 tj=25c 0,32 tj=125c 0,92 di(rec)max tj=25c 8818 /dt tj=125c 3866 tj=25c 0,03 tj=125c 0,12 thermal resistance chip to heatsink per chip r thjh thermal grease t hickness 50um = 1 w/mk 2,34 k/w 0,0015 v 0 40 350 1200 25 600 28 28 i ces q gate f=1mhz c ies erec i rrm rgoff=8 r gon=8 15 v ge(th) t f v ce(sat) e on e off gate charge r everse recovery time reverse leakage current i r c oss t r t d(off) v ce =v ge reverse transfer capacitance d iode forward voltage v f t rr output capacitance t urn-off energy loss per pulse fall time neutral point fwd peak reverse recovery current c rss q rr reverse recovered charge r everse recovered energy peak rate of fall of recovery current value c onditions characteristic values 135 1 85 2300 gate emitter threshold voltage turn-on delay time input capacitance rise time turn-on energy loss per pulse turn-off delay time integrated gate resistor gate-emitter leakage current collector-emitter cut-off current incl. diode collector-emitter saturation voltage half bridge igbt 30 t j=25c 40 960 350 0 t d(on) r gint i ges 15 15 15 c none 150 tj=25c rgoff=8 20 0 pf mws a ns ma nc v mws na ns v a a/s copyright vincotech 3 revision: 3
10-fy12m3a040sh-m749f08 10-F112M3A040SH-M749F09 parameter s ymbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max value c onditions characteristic values tj=25c 5 5,80 6,5 tj=125c tj=25c 1,1 1,52 1,9 tj=125c 1,70 tj=25c 0,0016 tj=125c 300 tj=25c 105 tj=125c 105 tj=25c 11 tj=125c 16 tj=25c 164 tj=125c 187 tj=25c 74 tj=125c 91 tj=25c 0,49 tj=125c 0,66 tj=25c 0,76 tj=125c 0,98 thermal resistance chip to heatsink per chip r thjh thermal grease t hickness 50um = 1 w/mk 2,56 k/w tj=25c 2,28 2,71 tj=125c 2,39 tj=25c 60 tj=125c tj=25c 41 tj=125c 44 tj=25c 44 tj=125c 110 tj=25c 1,47 tj=125c 2,73 di(rec)max tj=25c 5094 /dt tj=125c 3534 tj=25c 0,35 tj=125c 0,71 thermal resistance chip to heatsink per chip r thjh thermal grease t hickness 50um = 1 w/mk 3,36 k/w power dissipation constant b (25/100) b (25/50) b-value b -value vincotech ntc reference mw/k mw 210 3,5 tc=100c -4,5 tj=25c tj=25c tj=25c mws 30 0,002 a ns a c v +4,5 a/s mws tj=25c 28 tj=25c rise time neutral point igbt turn-on delay time g ate-emitter leakage current gate emitter threshold voltage v ge(th) v ce(sat) integrated gate resistor i ces r gint i ges collector-emitter saturation voltage c ollector-emitter cut-off incl diode na v v ns ma pf nc 30 % 28 p power dissipation deviation of r25 r100=1486 ? r/r half bridge fwd diode forward voltage r everse leakage current i r reverse recovery energy t rr v f rated resistance t hermistor r r everse recovered charge peak reverse recovery current i rrm q rr e rec peak rate of fall of recovery current 4 80 0 rgoff=16 v ce =v ge reverse recovery time t urn-off delay time t d(off) e off reverse transfer capacitance g ate charge q gate t f t r t d(on) fall time t urn-off energy loss per pulse c rss output capacitance i nput capacitance 15 15 rgoff=16 350 1200 15 15 50 3964 tj=25c tj=25c f 21511 k none 167 108 1630 3884 k tj=25c turn-on energy loss per pulse 600 25 350 0 rgon=16 f=1mhz e on c ies c oss 15 copyright vincotech 4 revision: 3
10-fy12m3a040sh-m749f08 10-F112M3A040SH-M749F09 figure 1 igbt figure 2 igbt typical output characteristics i c = f(v ce ) i c = f(v ce ) a t at t p = 2 50 s t p = 2 50 s t j = 2 5 c t j = 1 25 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 ig bt figure 4 fwd typical transfer characteristics ty pical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) a t at t p = 2 50 s t p = 2 50 s v ce = 1 0 v half bridge igbt and neutral point fwd buck typical output characteristics 0 30 60 90 120 150 180 0 1 2 3 4 5 v ce (v) i c (a) 0 10 20 30 40 50 0 2 4 6 8 10 12 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 25 50 75 100 125 0 1 2 3 4 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 30 60 90 120 150 180 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 5 revision: 3
10-fy12m3a040sh-m749f08 10-F112M3A040SH-M749F09 figure 5 igbt figure 6 igbt typical switching energy losses ty pical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) w ith an inductive load at with an inductive load at t j = 2 5/125 c t j = 2 5/125 c v ce = 3 50 v v ce = 3 50 v v ge = 15 v v ge = 15 v r gon = 8 i c = 2 8 a r goff = 8 fi gure 7 fw d figure 8 fwd typical reverse recovery energy loss ty pical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) w ith an inductive load at with an inductive load at t j = 2 5/125 c t j = 2 5/125 c v ce = 3 50 v v ce = 3 50 v v ge = 15 v v ge = 15 v r gon = 8 i c = 2 8 a half bridge igbt and neutral point fwd buck e on high t e off high t e on low t e off low t 0,0 0 ,5 1,0 1,5 2,0 0 15 30 45 60 i c (a) e (mws) e off high t e on high t e on low t e off low t 0,0 0,5 1,0 1,5 2,0 0 10 20 30 40 r g (  ) e (mws) e rec high t e rec low t 0,00 0 ,05 0,10 0,15 0,20 0 15 30 45 60 i c (a) e (mws) e rec high t e rec low t 0 0 ,03 0,06 0,09 0,12 0,15 0 10 20 30 40 r g (  ) e (mws) copyright vincotech 6 revision: 3
10-fy12m3a040sh-m749f08 10-F112M3A040SH-M749F09 figure 9 igbt figure 10 igbt typical switching times as a ty pical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) w ith an inductive load at with an inductive load at t j = 1 25 c t j = 1 25 c v ce = 3 50 v v ce = 3 50 v v ge = 15 v v ge = 15 v r gon = 8 i c = 2 8 a r goff = 8 fi gure 11 fw d figure 12 fwd typical reverse recovery time as a ty pical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(ic) t rr = f(r gon ) a t at t j = 2 5/125 c t j = 2 5/125 c v ce = 3 50 v v r = 3 50 v v ge = 15 v i f = 2 8 a r gon = 8 v ge = 15 v buck half bridge igbt and neutral point fwd t doff t f t don t r 0,00 0 ,01 0,10 1,00 0 15 30 45 60 i c (a) t (ms) t rr high t t rr low t 0,00 0 ,02 0,04 0,06 0,08 0,10 0 10 20 30 40 r gon (  ) t rr (ms) t doff t f t don t r 0,00 0 ,01 0,10 1,00 0 10 20 30 40 r g (  ) t (ms) t rr high t t rr low t 0,00 0 ,01 0,02 0,03 0,04 0,05 0 15 30 45 60 i c (a) t rr (ms) copyright vincotech 7 revision: 3
10-fy12m3a040sh-m749f08 10-F112M3A040SH-M749F09 figure 13 fwd figure 14 fwd typical reverse recovery charge as a ty pical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c ) q rr = f(r gon ) a t at at t j = 2 5/125 c t j = 2 5/125 c v ce = 3 50 v v r = 3 50 v v ge = 15 v i f = 2 8 a r gon = 8 v ge = 15 v figure 15 fw d figure 16 fwd typical reverse recovery current as a ty pical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c ) i rrm = f(r gon ) a t at t j = 2 5/125 c t j = 2 5/125 c v ce = 3 50 v v r = 3 50 v v ge = 15 v i f = 2 8 a r gon = 8 v ge = 15 v buck half bridge igbt and neutral point fwd i rrm high t i rrm low t 0 1 0 20 30 40 50 60 0 10 20 30 40 r gon (  ) i rrm (a) q rr high t q rr low t 0,0 0,3 0,6 0,9 1,2 0 10 20 30 40 r gon ( w ) q rr (mc) i rrm high t i rrm low t 0 1 0 20 30 40 50 60 0 15 30 45 60 i c (a) i rrm (a) q rr high t q rr low t 0,0 0 ,3 0,6 0,9 1,2 1,5 0 15 30 45 60 i c (a) q rr (mc) copyright vincotech 8 revision: 3
10-fy12m3a040sh-m749f08 10-F112M3A040SH-M749F09 figure 17 fwd figure 18 fwd typical rate of fall of forward ty pical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(ic) d i 0 /dt,di rec /dt = f(r gon ) a t at t j = 2 5/125 c t j = 2 5/125 c v ce = 3 50 v v r = 3 50 v v ge = 15 v i f = 2 8 a r gon = 8 v ge = 15 v figure 19 ig bt figure 20 fwd igbt transient thermal impedance fw d transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) a t at d = t p / t d = t p / t r thjh = 1 ,27 k/w r thjh = 2 ,34 k/w igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) 0,18 8,2e-01 0,11 2,4e+00 0,64 1,3e-01 0,36 3,0e-01 0,30 4,8e-02 1,41 6,5e-02 0,10 9,3e-03 0,28 1,1e-02 0,06 8,0e-04 0,19 1,6e-03 buck half bridge igbt and neutral point fwd t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di 0 /dt t di rec /dt t 0 3 000 6000 9000 12000 15000 0 10 20 30 40 r gon (  ) di rec / dt (a/ms) di rec /dt t di o /dt t 0 3 000 6000 9000 12000 0 15 30 45 60 i c (a) di rec / dt (a/ms) copyright vincotech 9 revision: 3
10-fy12m3a040sh-m749f08 10-F112M3A040SH-M749F09 figure 21 igbt figure 22 igbt power dissipation as a col lector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) a t at t j = 1 75 c t j = 1 75 c v ge = 1 5 v figure 23 fw d figure 24 fwd power dissipation as a for ward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) a t at t j = 1 50 c t j = 1 50 c half bridge igbt and neutral point fwd buck 0 40 80 120 160 200 240 0 50 100 150 200 t h ( o c) p tot (w) 0 15 30 45 60 75 0 50 100 150 200 t h ( o c) i c (a) 0 20 40 60 80 100 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 10 revision: 3
10-fy12m3a040sh-m749f08 10-F112M3A040SH-M749F09 figure 25 igbt figure 26 igbt safe operating area as a function ga te voltage vs gate charge of collector-emitter voltage i c = f(v ce ) v ge = f(q g ) a t at d = single pulse i c = 4 0 a th = 80 oc v ge = 15 v t j = t jmax oc fi gure 27 ig bt reverse bias safe operating area i c = f(v ce ) a t t j = t jmax -25 o c dc link minus =dc link plus switching mode : 3 level switching buck half bridge igbt and neutral point fwd v ce (v) i c (a) 10 4 10 1 10 0 10 2 10 3 10 1 10 2 10 0 100us 1ms 10ms 100ms dc 10 0 10 3 0 2 4 6 8 10 12 14 16 0 50 100 150 200 q g (nc) v ge (v) 240v 960v 0 20 40 60 80 100 0 200 400 600 800 1000 1200 1400 v ce (v) i c (a) i c max v ce max i c module i c chip copyright vincotech 11 revision: 3
10-fy12m3a040sh-m749f08 10-F112M3A040SH-M749F09 figure 1 igbt figure 2 igbt typical output characteristics ty pical output characteristics i c = f(v ce ) i c = f(v ce ) a t at t p = 2 50 s t p = 2 50 s t j = 2 5 c t j = 1 25 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 ig bt figure 4 fwd typical transfer characteristics ty pical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) a t at t p = 2 50 s t p = 2 50 s v ce = 1 0 v boost neutral point igbt and half bridge fwd 0 20 40 60 80 100 0 1 2 3 4 5 v ce (v) i c (a) 0 10 20 30 40 50 0 2 4 6 8 10 12 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 20 40 60 80 0 1 2 3 4 5 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 20 40 60 80 100 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 12 revision: 3
10-fy12m3a040sh-m749f08 10-F112M3A040SH-M749F09 figure 5 igbt figure 6 igbt typical switching energy losses ty pical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) w ith an inductive load at with an inductive load at t j = 2 5/125 c t j = 2 5/125 c v ce = 3 50 v v ce = 3 50 v v ge = 15 v v ge = 15 v r gon = 1 6 i c = 2 8 a r goff = 1 6 figure 7 fw d figure 8 fwd typical reverse recovery energy loss ty pical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) w ith an inductive load at with an inductive load at t j = 2 5/125 c t j = 2 5/125 c v ce = 3 50 v v ce = 3 50 v v ge = 15 v v ge = 15 v r gon = 1 6 i c = 2 8 a boost neutral point igbt and half bridge fwd e rec high t e rec low t 0,0 0 ,2 0,4 0,6 0,8 1,0 0 15 30 45 60 i c (a) e (mws) e rec high t e rec low t 0,0 0 ,2 0,4 0,6 0,8 1,0 0 20 40 60 80 r g ( w ww w ) e (mws) e off high t e on high t e on low t e off low t 0,0 0 ,5 1,0 1,5 2,0 0 15 30 45 60 i c (a) e (mws) e off high t e on high t e on low t e off low t 0,0 0 ,5 1,0 1,5 2,0 0 20 40 60 80 r g ( w ww w ) e (mws) copyright vincotech 13 revision: 3
10-fy12m3a040sh-m749f08 10-F112M3A040SH-M749F09 figure 9 igbt figure 10 igbt typical switching times as a ty pical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) w ith an inductive load at with an inductive load at t j = 1 25 c t j = 1 25 c v ce = 3 50 v v ce = 3 50 v v ge = 15 v v ge = 15 v r gon = 1 6 i c = 2 8 a r goff = 1 6 figure 11 fw d figure 12 fwd typical reverse recovery time as a ty pical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(ic) t rr = f(r gon ) a t at t j = 2 5/125 c t j = 2 5/125 c v ce = 3 50 v v r = 3 50 v v ge = 15 v i f = 2 8 a r gon = 1 6 v ge = 15 v boost neutral point igbt and half bridge fwd t doff t f t don t r 0,00 0 ,01 0,10 1,00 0 15 30 45 60 i c (a) t ( m s) t doff t f t don t r 0,00 0 ,01 0,10 1,00 0 20 40 60 80 r g ( w ww w ) t ( m s) t rr high t t rr low t 0,00 0 ,05 0,10 0,15 0,20 0,25 0,30 0 15 30 45 60 75 r gon (  ) t rr (ms) t rr high t t rr low t 0,00 0 ,03 0,06 0,09 0,12 0 15 30 45 60 i c (a) t rr (ms) copyright vincotech 14 revision: 3
10-fy12m3a040sh-m749f08 10-F112M3A040SH-M749F09 figure 13 fwd figure 14 fwd typical reverse recovery charge as a ty pical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c ) q rr = f(r gon ) a t at at t j = 2 5/125 c t j = 2 5/125 c v ce = 3 50 v v r = 3 50 v v ge = 15 v i f = 2 8 a r gon = 1 6 v ge = 15 v figure 15 fw d figure 16 fwd typical reverse recovery current as a ty pical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c ) i rrm = f(r gon ) a t at t j = 2 5/125 c t j = 2 5/125 c v ce = 3 50 v v r = 3 50 v v ge = 15 v i f = 2 8 a r gon = 1 6 v ge = 15 v neutral point igbt and half bridge fwd boost i rrm high t i rrm low t 0 2 0 40 60 80 100 0 15 30 45 60 75 r gon (  ) i rrm (a) q rr high t q rr low t 0 1 2 3 4 0 15 30 45 60 75 r gon ( w ) q rr (mc) i rrm high t i rrm low t 0 1 0 20 30 40 50 60 0 15 30 45 60 i c (a) i rrm (a) q rr high t q rr low t 0 1 2 3 4 0 10 20 30 40 50 60 i c (a) q rr (mc) copyright vincotech 15 revision: 3
10-fy12m3a040sh-m749f08 10-F112M3A040SH-M749F09 figure 17 fwd figure 18 fwd typical rate of fall of forward ty pical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(ic) d i 0 /dt,di rec /dt = f(r gon ) a t at t j = 2 5/125 c t j = 2 5/125 c v ce = 3 50 v v r = 3 50 v v ge = 15 v i f = 2 8 a r gon = 1 6 v ge = 15 v figure 19 ig bt figure 20 fwd igbt transient thermal impedance fw d transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) a t at d = tp / t d = tp / t r thjh = 2 ,56 k/w r thjh = 3 ,36 k/w igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) 0,10 3,0e+00 0,11 2,6e+00 0,25 4,8e-01 0,25 3,8e-01 1,64 7,9e-02 1,48 7,2e-02 0,32 1,9e-02 0,67 1,8e-02 0,15 4,2e-03 0,50 3,4e-03 0,11 5,1e-04 0,34 7,0e-04 boost neutral point igbt and half bridge fwd t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di 0 /dt t di rec /dt t 0 3 000 6000 9000 12000 15000 0 15 30 45 60 75 r gon (  ) di rec / dt (a/ms) di 0 /dt t di rec /dt t 0 1 000 2000 3000 4000 5000 6000 0 10 20 30 40 50 60 i c (a) di rec / dt (a/ms) copyright vincotech 16 revision: 3
10-fy12m3a040sh-m749f08 10-F112M3A040SH-M749F09 figure 21 igbt figure 22 igbt power dissipation as a col lector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) a t at t j = 1 75 oc t j = 1 75 oc v ge = 1 5 v figure 23 fw d figure 24 fwd power dissipation as a for ward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) a t at t j = 1 75 oc t j = 1 75 oc boost neutral point igbt and half bridge fwd 0 20 40 60 80 100 120 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 0 50 100 150 200 t h ( o c) i c (a) 0 20 40 60 80 0 50 100 150 200 th ( o c) p tot (w) 0 5 10 15 20 25 0 50 100 150 200 th ( o c) i f (a) copyright vincotech 17 revision: 3
10-fy12m3a040sh-m749f08 10-F112M3A040SH-M749F09 figure 1 thermistor typical ntc characteristic as a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 0 4 000 8000 12000 16000 20000 24000 25 50 75 100 125 t (c) r/  copyright vincotech 18 revision: 3
10-fy12m3a040sh-m749f08 10-F112M3A040SH-M749F09 t j 125 c r gon 16  r goff 16  fi gure 1 bo ost igbt figure 2 boost igbt turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of t don , t eon (t eoff = integrating time for e off ) (t eon = integrating time for e on ) v ge (0%) = - 15 v v ge (0%) = - 15 v v ge (100%) = 1 5 v v ge (100%) = 1 5 v v c (100%) = 3 50 v v c (100%) = 3 50 v i c (100%) = 2 8 a i c (100%) = 2 8 a t doff = 0 ,19 s t don = 0 ,11 s t eoff = 0 ,39 s t eon = 0 ,26 s figure 3 bo ost igbt figure 4 boost igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 3 50 v v c (100%) = 3 50 v i c (100%) = 2 8 a i c (100%) = 2 8 a t f = 0 ,09 s t r = 0 ,02 s switching definitions neutral point general conditions = = = i c 1% v ce 90% v ge 90% -25 0 2 5 50 75 100 125 -0,2 0 0,2 0,4 0,6 time (us) % t doff t eoff v ce i c v ge i c 10% v ge 10% t don v ce 3% -50 0 5 0 100 150 200 250 300 2,9 3 3,1 3,2 3,3 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -25 0 2 5 50 75 100 125 0 0,1 0,2 0,3 0,4 time (us) % v ce i c t f i c 10% i c 90% -50 0 5 0 100 150 200 250 300 3,05 3,1 3,15 3,2 3,25 time(us) % t r v ce i c copyright vincotech 1 9 revision: 3
10-fy12m3a040sh-m749f08 10-F112M3A040SH-M749F09 figure 5 boost igbt figure 6 boost igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 9 ,70 kw p on (100%) = 9 ,70 kw e off (100%) = 0 ,98 mj e on (100%) = 0 ,66 mj t eoff = 0 ,39 s t eon = 0 ,26 s figure 7 bo ost igbt figure 8 buck fwd gate voltage vs gate charge (measured) tur n-off switching waveforms & definition of t rr v geoff = - 15 v v d (100%) = 3 50 v v geon = 1 5 v i d (100%) = 2 8 a v c (100%) = 3 50 v i rrm (100%) = - 44 a i c (100%) = 2 8 a t rr = 0 ,11 s q g = 2 77 nc switching definitions neutral point i c 1% v ge 90% -25 0 2 5 50 75 100 125 -0,2 0 0,2 0,4 0,6 time (us) % p off e off t eoff v ce 3% v ge 10% -50 0 5 0 100 150 200 2,9 3 3,1 3,2 3,3 time(us) % p on e on t eon -20 -15 -10 -5 0 5 10 15 20 -50 0 50 100 150 200 250 300 qg (nc) v ge (v) i rrm 10% i rrm 90% i rrm 100% t rr -200 - 150 -100 -50 0 50 100 150 3 3,05 3,1 3,15 3,2 3,25 3,3 time(us) % i d v d fitted copyright vincotech 2 0 revision: 3
10-fy12m3a040sh-m749f08 10-F112M3A040SH-M749F09 figure 9 boost igbt figure 10 buck fwd turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) (t erec = integrating time for e rec ) i d (100%) = 2 8 a p rec (100%) = 9 ,70 kw q rr (100%) = 2 ,73 c e rec (100%) = 0 ,71 mj t qrr = 1 ,00 s t erec = 1 ,00 s figure 11 neutral point stage switching measurement circuit measurement circuits s witching definitions neutral point t qrr -200 - 150 -100 -50 0 50 100 150 3 3,2 3,4 3,6 3,8 4 4,2 time(us) % i d q rr -25 0 25 50 75 100 125 3 3,2 3,4 3,6 3,8 4 4,2 time(us) % p rec e rec t erec copyright vincotech 21 revision: 3
10-fy12m3a040sh-m749f08 10-F112M3A040SH-M749F09 t j 125 c r gon 8  r goff 8  fi gure 1 bu ck igbt figure 2 buck igbt turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of t don , t eon (t eoff = integrating time for e off ) (t eon = integrating time for e on ) v ge (0%) = - 15 v v ge (0%) = - 15 v v ge (100%) = 1 5 v v ge (100%) = 1 5 v v c (100%) = 3 50 v v c (100%) = 3 50 v i c (100%) = 2 8 a i c (100%) = 2 8 a t doff = 0 ,22 s t don = 0 ,07 s t eoff = 0 ,61 s t eon = 0 ,20 s figure 3 bu ck igbt figure 4 buck igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 3 50 v v c (100%) = 3 50 v i c (100%) = 2 8 a i c (100%) = 2 8 a t f = 0 ,08 s t r = 0 ,02 s switching definitions half bridge general conditions = = = i c 1% v ce 90% v ge 90% -25 0 2 5 50 75 100 125 -0,2 0 0,2 0,4 0,6 0,8 time (us) % t doff t eoff v ce i c v ge i c 10% v ge 10% t don v ce 3% -50 0 5 0 100 150 200 250 2,9 3 3,1 3,2 3,3 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -25 0 2 5 50 75 100 125 0 0,1 0,2 0,3 0,4 time (us) % v ce i c t f i c 10% i c 90% -50 0 5 0 100 150 200 250 3,05 3,07 3,09 3,11 3,13 3,15 time(us) % t r v ce i c copyright vincotech 2 2 revision: 3
10-fy12m3a040sh-m749f08 10-F112M3A040SH-M749F09 figure 5 buck igbt figure 6 buck igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 9 ,75 kw p on (100%) = 9 ,75 kw e off (100%) = 1 ,16 mj e on (100%) = 0 ,52 mj t eoff = 0 ,61 s t eon = 0 ,20 s figure 7 bu ck igbt figure 8 boost fwd gate voltage vs gate charge (measured) tur n-off switching waveforms & definition of t rr v geoff = - 15 v v d (100%) = 3 50 v v geon = 1 5 v i d (100%) = 2 8 a v c (100%) = 3 50 v i rrm (100%) = - 41 a i c (100%) = 2 8 a t rr = 0 ,04 s q g = 2 99,41 nc switching definitions half bridge i c 1% v ge 90% -25 0 2 5 50 75 100 125 -0,2 0 0,2 0,4 0,6 0,8 time (us) % p off e off t eoff v ce 3% v ge 10% -50 0 5 0 100 150 200 2,9 3 3,1 3,2 3,3 time(us) % p on e on t eon -20 -15 -10 -5 0 5 10 15 20 -50 0 50 100 150 200 250 300 qg (nc) v ge (v) i rrm 10% i rrm 90% i rrm 100% t rr -150 - 100 -50 0 50 100 150 3,07 3,09 3,11 3,13 3,15 3,17 time(us) % i d v d fitted copyright vincotech 2 3 revision: 3
10-fy12m3a040sh-m749f08 10-F112M3A040SH-M749F09 figure 9 buck igbt figure 10 boost fwd turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) (t erec = integrating time for e rec ) i d (100%) = 2 8 a p rec (100%) = 9 ,75 kw q rr (100%) = 0 ,92 c e rec (100%) = 0 ,12 mj t qrr = 0 ,08 s t erec = 0 ,08 s figure 11 half bridge stage switching measurement circuit measurement circuits s witching definitions half bridge t qrr -150 - 100 -50 0 50 100 150 3,04 3,08 3,12 3,16 3,2 time(us) % i d q rr -25 0 25 50 75 100 125 3,05 3,1 3,15 3,2 3,25 time(us) % p rec e rec t erec copyright vincotech 24 revision: 3
10-fy12m3a040sh-m749f08 10-F112M3A040SH-M749F09 version ordering code in datamatrix as in packaging barcode as without thermal paste 12mm housing 10-fy12m3a040sh-m749f08 m749f08 m749f08 without thermal paste 17mm housing 10-F112M3A040SH-M749F09 m749f09 m749f09 outline pinout ordering code & marking ordering code and marking - outline - pinout copyright vincotech 25 revision: 3
10-fy12m3a040sh-m749f08 10-F112M3A040SH-M749F09 disclaimer l ife support policy as used herein: 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. the information given in this datasheet describes the type of component and does not represent assured characteristics. for tested values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. copyright vincotech 26 revision: 3


▲Up To Search▲   

 
Price & Availability of 10-F112M3A040SH-M749F09

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X